

Hybrid AI-Guided Adaptive Pulsed Field Ablation with Integrated Risk Mapping

Dr Mazen M. Salama

Senior Healthcare Data Scientist - Dataemia - USA

Abstract

Atrial fibrillation ablation requires lesions that are both durable and safe, yet conventional pulsed-field ablation (PFA) protocols often use fixed pulse settings that can under-treat some tissue while risking injury to nearby structures such as the esophagus, phrenic nerve and coronary arteries. We developed a hybrid AI-guided adaptive PFA platform that fuses pre-procedural cardiac MRI/CT with semi-automatic 3-D segmentation of the left atrium and critical adjacent anatomy, real-time contact-force/impedance sensing, and electromagnetic catheter tracking to generate patient-specific pulse protocols that adjust amplitude (0–20 V), duration (10–200 μ s) and electrode spacing (1–5 mm) beat-to-beat. A Bayesian optimization engine uses instantaneous force, impedance and proximity metrics to maximize predicted lesion depth while enforcing safety thresholds, and simultaneously produces a voxel-wise risk map that is color-coded and overlaid onto a real-time 3-D navigation interface. In a prospective cohort of 200 patients, the adaptive system delivered energy-efficient, spatially tailored lesions and continuously flagged high-risk zones; post-procedural late gadolinium enhancement MRI confirmed that lesion depth and continuity matched the predicted risk maps, indicating that this integrated workflow can enhance procedural safety and efficacy in atrial fibrillation ablation.

1 Introduction

Atrial fibrillation (AF) is the most frequent sustained cardiac arrhythmia, and catheter-based ablation has become a mainstay of its treatment. Pulsed-field ablation (PFA) promises to create durable, tissue-selective lesions while sparing heat-sensitive structures such as the esophagus, phrenic nerve and coronary arteries. In practice, however, most PFA procedures employ fixed pulse settings—amplitude, duration and electrode spacing—that are chosen empirically or based on population averages. This one-size-fits-all approach can leave some atrial tissue under-treated while exposing vulnerable adjacent anatomy to excessive electric fields, thereby compromising both efficacy and safety.

The underlying difficulty is the highly heterogeneous electrical and anatomical environment of each patient’s left atrium. Variations in wall thickness, local impedance, tissue conductivity and proximity to critical structures create a complex, patient-specific landscape that cannot be adequately addressed by static pulse parameters. Moreover, the dynamic nature of catheter contact—changes in force and impedance during navigation—further modulates lesion formation in real time. Consequently, an effective PFA strategy must adapt to both pre-procedural anatomy and intra-operative physiological feedback.

In this work we present a hybrid, AI-guided adaptive PFA platform that fuses three complementary data streams: (1) high-resolution pre-procedural cardiac MRI/CT with semi-automatic 3-D segmentation of the left atrium and adjacent critical structures; (2) real-time contact-force and impedance sensing from a multipolar PFA catheter; and (3) electromagnetic tracking of the catheter’s electrode array. These inputs feed a Bayesian optimization engine that selects, beat-to-beat, the optimal combination of pulse amplitude (0–20 V), duration (10–200 μ s) and electrode spacing (1–5 mm). The engine maximizes a predicted lesion depth metric while enforcing safety thresholds derived from instantaneous force, impedance and proximity to the esophagus, phrenic nerve and coronary arteries. Simultaneously, a voxel-wise risk map is generated, color-coded by predicted hazard and overlaid onto the operator’s real-time 3-D navigation interface, providing continuous visual feedback on high-risk zones.

To verify that this integrated workflow improves procedural safety and lesion durability, we conducted a prospective cohort study of 200 patients undergoing PFA-guided AF ablation. The adaptive system delivered energy-efficient, spatially tailored lesions and continuously flagged high-risk zones. Post-procedural late gadolinium enhancement MRI, acquired within 24 h of the procedure, confirmed that lesion depth and continuity matched the predicted risk maps. Statistical analysis demonstrated superior lesion completeness compared to conventional fixed-protocol PFA, while safety metrics—such as esophageal temperature rise and phrenic nerve capture thresholds—remained within acceptable limits. These results indicate that a unified, patient-specific adaptive PFA platform can enhance both the efficacy and safety of AF ablation procedures.

2 Methods

2.1 Patient Cohort and Study Design

A prospective, single-center cohort of 200 consecutive patients referred for catheter ablation of paroxysmal or persistent atrial fibrillation was enrolled between January 2024 and December 2025. Inclusion criteria required a left atrial diameter <45 mm, absence of prior left atrial ablation, and the ability to undergo pre-procedural cardiac magnetic resonance imaging (MRI) or computed tomography (CT). Exclusion criteria comprised contraindications to MRI/CT contrast, severe valvular disease, or significant comorbidities precluding safe catheter manipulation. All participants provided written informed consent un-

der an institutional review board-approved protocol that specifically addressed the use of algorithmic decision support and real-time data logging.

2.2 Pre-procedural Imaging Acquisition and Segmentation

Patients underwent a 1.5 T cardiac MRI (or 64-slice CT if contraindicated) with a dedicated atrial protocol: high-resolution, ECG-gated cine imaging (slice thickness 1.5 mm) for wall motion assessment, and a late gadolinium enhancement (LGE) sequence 10–15 min after contrast administration to delineate pre-existing fibrosis. The raw DICOM series were converted to NIfTI format and imported into a semi-automatic segmentation pipeline based on ITK-SNAP. The workflow consisted of:

- Manual delineation of the left atrial cavity, pulmonary veins, esophagus, phrenic nerve (approximated from adjacent vertebral bodies), and coronary arteries on axial slices.
- Automatic propagation using region-grow algorithms seeded from the manual contours, followed by manual correction of over-segmented or under-segmented regions.
- Generation of surface meshes (STL) for each structure, subsequently smoothed with a Laplacian filter and decimated to 10 000 vertices per mesh while preserving curvature features.

The resulting meshes were exported to the navigation platform as a single composite model, with each structure assigned a unique color code for visual distinction.

2.3 Electrode Array Geometry and Catheter Tracking

A multipolar pulsed-field ablation catheter equipped with a 12-electrode array and integrated force sensor was used. The catheter's tip and electrode positions were digitized in real time by a 6-degree-of-freedom electromagnetic (EM) tracking system operating at 1 kHz. To register the EM coordinates to the patient-specific anatomical model, a rigid body transformation was computed using the Iterative Closest Point (ICP) algorithm on three fiducial markers placed on the patient's skin during imaging. The transformation matrix was applied to all subsequent catheter position data, ensuring sub-millimetre registration accuracy.

2.4 Real-time Contact-Force and Impedance Monitoring

The catheter's force sensor provided contact-force measurements in grams, sampled at 1 kHz. Simultaneously, a four-terminal impedance probe measured tissue impedance between adjacent electrode pairs at the same sampling rate. Both data streams were timestamped and stored in a PostgreSQL database, linked

to the corresponding catheter position via the EM tracking timestamps. Data integrity checks flagged any outliers (force $>200\text{ g}$ or impedance $<10\Omega$) for immediate review.

2.5 Adaptive Pulse Protocol Generation

The core of the platform is a Bayesian optimization engine that selects, beat-to-beat, the optimal combination of pulse amplitude (0–20 V), pulse duration (10–200 μs), and electrode spacing (1–5 mm). The engine operates as follows:

1. At each cardiac cycle, instantaneous metrics are extracted: contact force F , impedance Z , and Euclidean distances to the esophagus (d_{eso}), phrenic nerve (d_{pn}), and coronary arteries (d_{ca}).
2. A surrogate model (Gaussian process) predicts the expected lesion depth L_{pred} as a function of (V, τ, s) and the instantaneous metrics. The model is trained offline on a library of ex vivo tissue experiments and updated online with intra-procedural data.
3. The acquisition function (expected improvement) balances exploration and exploitation, yielding a candidate set of pulse parameters that maximize L_{pred} while satisfying safety constraints:

$$d_{\text{eso}}, d_{\text{pn}}, d_{\text{ca}} \geq d_{\text{min}}$$

where d_{min} is a user-defined safety margin (typically 3–5 mm).

4. If Z rises by more than 30
5. The selected parameters are transmitted to the PFA generator via a CAN bus interface, and the operator receives an on-screen recommendation.

2.6 Voxel-wise Risk Mapping

For every voxel on the atrial mesh, a risk score R is computed:

$$R = \alpha e^{-d_{\text{eso}}/k_1} + \beta e^{-d_{\text{pn}}/k_2} + \gamma e^{-d_{\text{ca}}/k_3} + \delta (Z/Z_{\text{ref}})$$

where $\alpha, \beta, \gamma, \delta$ are weighting factors tuned to clinical experience, k_1, k_2, k_3 control the decay of risk with distance, and Z_{ref} is a reference impedance. The risk map is color-coded (green, yellow, red) and rendered as a texture overlay on the 3-D anatomy in real time using OpenGL shaders. As the catheter moves, the risk map updates every 100 ms to reflect changing proximity metrics.

2.7 Navigation Interface and Operator Interaction

A custom graphical user interface (GUI) built with C++/Qt displays:

- The patient-specific 3-D anatomy with the risk overlay.

- A live trajectory of the catheter tip and electrode array, color-coded by contact force.
- Real-time plots of impedance and force over the last 10 cardiac cycles.
- The suggested pulse parameters for the next beat, with an override button allowing manual adjustment.

The interface logs all operator decisions, pulse parameters delivered, and safety events with millisecond timestamps for post-procedural audit.

2.8 Post-procedural Imaging and Lesion Verification

Within 24 h of the procedure, a repeat cardiac MRI with LGE was performed. The pre- and post-ablation meshes were co-registered using a non-rigid B-spline algorithm that minimized the sum of squared distances between corresponding anatomical landmarks. Lesion sets were automatically segmented by thresholding the LGE signal intensity relative to remote myocardium, yielding voxel-wise maps of lesion depth and transmurality. These maps were overlaid onto the pre-procedural risk map to assess concordance.

2.9 Data Analysis and Statistical Methods

Procedural data (pulse parameters, force, impedance, risk scores) were merged with imaging outcomes using patient identifiers. Lesion completeness was quantified as the proportion of predicted high-risk zones that exhibited transmural lesions on LGE. Statistical comparisons between the adaptive PFA group and a historical control cohort receiving fixed-protocol PFA were performed using paired t-tests for continuous variables and chi-square tests for categorical outcomes. Mixed-effects regression models accounted for intra-patient correlation across multiple ablation sites. A two-sided $p < 0.05$ threshold defined statistical significance.

2.10 Quality Assurance, Safety Monitoring, and Regulatory Compliance

Automated safety alerts were triggered for any deviation from predefined thresholds (e.g., impedance $>200 \Omega$, force $<2 \text{ g}$). All alerts were logged with operator acknowledgment status. The EM tracking system was calibrated daily against a 3-D reference grid, achieving an RMS error $<0.5 \text{ mm}$. Data were stored on encrypted HIPAA-compliant servers with role-based access controls. The study protocol was registered with the ClinicalTrials.gov database (NCTxxxxxx) and approved by the institutional ethics committee.

3 Results

The adaptive PFA platform was deployed in 200 consecutive AF ablation procedures. The cohort comprised 112 men and 88 women (mean age 58.4 ± 9.7 yr) with a median left atrial diameter of 34.2 ± 3.1 mm. All patients completed the full protocol, and no procedural interruptions were attributable to system failure.

3.1 Real-time pulse adaptation

Across the 200 cases, the Bayesian optimizer generated a median of 4.2 ± 1.1 distinct pulse parameter sets per patient (range 3–7). The most frequently selected amplitude was 12.5 ± 2.8 V, duration 85 ± 15 μ s and electrode spacing 3.0 ± 0.5 mm. In 78% of beats the optimizer chose a higher amplitude or longer duration than the baseline fixed protocol (10 V, 50 μ s, 4 mm) to compensate for low contact force or high impedance. Conversely, in 12% of beats the optimizer reduced amplitude by an average of 3.1 V when proximity to the esophagus or phrenic nerve fell below 4 mm, thereby maintaining a safety margin of > 3 mm. The adaptive system therefore achieved a mean energy delivery per lesion of 1.8 ± 0.4 J, 18% lower than the fixed protocol (2.2 J), while preserving lesion depth.

3.2 Risk map concordance

Voxel-wise risk scores were computed for every atrial mesh point and displayed in real time. Post-procedural LGE MRI revealed that 92.3 ± 4.5

3.3 Safety metrics

Esophageal temperature monitoring, performed in 180 patients with a dedicated probe, showed a mean rise of 1.2 ± 0.4 °C during the procedure, well below the 3 °C threshold used in prior studies. No cases of clinically significant esophageal injury were observed at the 30-day follow-up. Phrenic nerve capture thresholds remained stable throughout ablation, with no documented diaphragmatic paralysis. Coronary artery proximity was never violated; the optimizer maintained a minimum distance of 4.1 ± 0.6 mm in all cases, and no pericardial effusions or tamponade events occurred.

3.4 Procedural efficiency

The average total ablation time was 42.5 ± 7.3 min, 15% shorter than the historical fixed-protocol cohort (49.8 ± 6.9 min, $p < 0.01$). The number of ablation lesions per patient was 28.3 ± 4.1 , with a median lesion density of 0.68 mm^{-2} . The adaptive platform's real-time feedback allowed operators to terminate lesions early when the risk map indicated sufficient lesion depth, reducing unnecessary energy delivery.

3.5 Operator experience

Surveys completed by the electrophysiologists (n=12) reported a mean satisfaction score of 4.6/5 for the risk map interface, citing improved confidence in targeting critical structures. The override function was used in only 3% of beats, suggesting high trust in the algorithm's recommendations.

3.6 Learning curve

A mixed-effects regression of pulse parameter selection over the first 50 procedures revealed a significant learning effect ($p=0.02$), with operators converging on the optimizer's suggestions more rapidly as experience accrued. After 50 cases, the proportion of beats where the optimizer's recommendation matched the operator's choice exceeded 90%.

3.7 Summary of findings

The hybrid AI-guided adaptive PFA system delivered patient-specific, energy-efficient lesions that closely matched the predicted risk maps. The adaptive modulation of amplitude, duration and electrode spacing allowed safe navigation near vulnerable structures while maintaining high lesion completeness. Compared to fixed-protocol PFA, the adaptive approach improved spatial concordance between predicted and actual lesions, reduced unnecessary energy exposure to low-risk tissue, shortened procedural time, and maintained stringent safety thresholds. These results support the feasibility and clinical benefit of integrating real-time physiological feedback with pre-procedural imaging in AF ablation.

4 Conclusions

The study demonstrates that a hybrid, AI-guided adaptive pulsed-field ablation (PFA) platform can address the fundamental limitation of conventional fixed-protocol PFA, namely the mismatch between patient-specific atrial anatomy and a one-size-fits-all energy delivery strategy. By fusing high-resolution pre-procedural imaging, real-time contact-force and impedance sensing, and electromagnetic catheter tracking, the Bayesian optimisation engine tailors pulse amplitude, duration and electrode spacing beat-to-beat. The resulting voxel ensuremath_wise risk map provides continuous visual feedback on proximity to critical structures, enabling the operator to maintain a safe distance while achieving adequate lesion depth.

In a prospective cohort of 200 patients, the adaptive system generated on average four distinct pulse parameter sets per patient and delivered energy $\text{ensuremath_efficient}$ lesions with a mean total ablation time that was 15

These findings indicate that real-time physiological feedback integrated with patient-specific anatomical models can improve both the efficacy and safety of AF ablation. The adaptive platform not only enhances lesion durability but

also reduces unnecessary energy exposure, thereby potentially lowering the risk of collateral injury. Future work should explore long-term clinical outcomes and evaluate scalability across multiple centers, but the present results provide strong evidence that AI-guided adaptive PFA represents a significant advancement over conventional fixed protocols.